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ABSTRACT

Increasing population indicates that energy demands need to
be managed in the residential sector. Prior studies have re-
flected that the customers tend to reduce a significant amount
of energy consumption if they are provided with appliance-
level feedback. This observation has increased the relevance
of load monitoring in today’s tech-savvy world. Most of the
previously proposed solutions claim to perform load moni-
toring without intrusion, but they are not completely non-
intrusive. These methods require historical appliance-level
data for training the model for each of the devices. This
data is gathered by putting a sensor on each of the appliances
present in the home which causes intrusion in the building.
Some recent studies have proposed that if we frame Non-
Intrusive Load Monitoring (NILM) as a multi-label classi-
fication problem, the need for appliance-level data can be
avoided. In this paper, we propose Multi-label Restricted
Boltzmann Machine(ML-RBM) for NILM and report an ex-
perimental evaluation of proposed and state-of-the-art tech-
niques.

Index Terms— Machine learning, Multi-Label Classi-
fication, Non-Intrusive Load Monitoring, Smart Grid, Re-
stricted Boltzmann Machine.

1. INTRODUCTION

Increasing population is a direct indication of growth in en-
ergy demands in the residential as well as commercial sector
[1]. To meet the demands non-renewable resources are used
which is the leading cause of global warming [2]. Energy
saving and demand-side management is need-of-the-hour.

Load monitoring is one of the ways to collect the energy
data required to devise automated energy management sys-
tems. It also helps in providing feedback to consumers to
understand their consumptions. The feedback enables cus-
tomers to participate in energy-saving and cost-cutting activ-
ities [3].

There are two ways to perform load monitoring. One
way is to put sensors on each of the appliances deployed in
a building that can sample the energy consumption and store
the data. The second way is to use such algorithms that can
segregate the appliance-level load from the aggregated units

of consumption. The first one is a non-practical approach. It
is not only costly but intrusive too. The second way, known
as Non-Intrusive Load Monitoring /Non-Intrusive Appliance
Load Monitoring (NIALM), is more practical and scalable
than the first one.

Most of the state-of-the-art NILM algorithms, until re-
cently, use historical appliance-level sampled data to learn
models of individual appliances used in the building. Once
the model for each of the targeted devices is trained, the seg-
regation could be performed just by estimating the device-
specific loads from the sampled aggregated load. The re-
quirement of appliances’ consumption data makes the train-
ing phase intrusive.

In recent studies [4–6], NILM has been framed as a multi-
label classification problem. These techniques make use of
annotated aggregated load for training the model. The anno-
tation contains information about the ON/OFF state of each
of the target devices. The annotation can be performed with
the help of the cameras installed on premises. This frame-
work circumvents the need for device-level loads, and thus
the training phase does not require multiple sensors in the
buildings. This modification enables a large-scale roll-out of
NILM from the utilities.

Our work is motivated by advantages of the transforma-
tion of NILM as a Multi-label classification task and the suc-
cess of deep learning as a solution to similar problems. We
propose a new approach to multi-label classification based on
the Restricted Boltzmann Machine (RBM) [7]. RBMs have
never been used for multi-label classification so far. It is a
classic example of algorithm adaptation for multi-label clas-
sification.

RBMs [8] have been effective in learning high-level fea-
tures and capturing high-order correlations of the observed
variables. A typical RBM has a hidden unit in which nodes
are conditionally independent given the visible state. RBMs
have good reconstruction accuracy which can be leveraged to
generate individual load information in latent space. We pro-
pose that generative property of RBMs combined with multi-
label supervision can be used to perform NILM via state de-
tection of appliances.



2. LITERATURE REVIEW

2.1. Combinatorial Optimization

Studies in combinatorial optimization (CO) such as [9] are
based on the principle that total consumption in a building
can be approximated as a sum of device-level loads. So ag-
gregated consumption in a building can be expressed as

Pagg =

N∑
i=1

siPi (1)

where Pi is individual device load, Pagg is aggregated
load, N is the total number of appliances, and si is a vector
that indicates the state of devices i.e., 0 for ’OFF’ state and 1
for ’ON’ state.

For load segregation, the motive is to find out the combi-
nations of individual loads whose sum can be approximated
as the aggregated load. We can formulate the task of simulta-
neous detection of ON/OFF state of the devices, ŝ, as

_
s = arg min

s

∣∣∣∣∣∣Pagg −
N∑
i=1

siPi

∣∣∣∣∣∣ (2)

Equation (2) is an NP-hard problem and quickly becomes
intractable as the number of appliances scales up.

2.2. Finite State Machines

Apart from the computational complexity, another problem
with CO is that it cannot account for the fact that one appli-
ance can run at different power levels, e.g. A.C., fan, washer,
etc. However these days most of the appliances (like light,
fan, A.C., washer) have marked different states, so it is fair
to model the state of the devices as Hidden Markov Mod-
els (HMMs). The study [10] models aggregated load as an
outcome of the interaction of a finite number of independent
HMMs.

Most of the modern appliances such as printers, comput-
ers, inverters do not have marked states. They are continu-
ously varying. In such situations, the above assumption fails;
this, in turn, leads to poor disaggregation performance.

2.3. Multi-Label Classification

The classification task where one sample may belong to one
or more classes is known as multi-label classification (MLC).
Hence, in this case, each sample is mapped to a binary vector
of 0’s and 1’s, assigning 0 or 1 to each of the classes.

Since the aggregated load of a building at any instance
may be an outcome of several active appliances’ consump-
tion, Tabatabaei et al. [4], and Li et al. [5], framed NILM as an
MLC problem. [4] compared the performance of two multi-
label classifiers viz Multi-Label K-Nearest Neighbours (ML-
kNN) and Random k-Label Sets (RakEl) using time-domain
and wavelet-domain features of appliances.

Another recent work [6] uses Multi-label Consistent Deep
Dictionary Learning for simultaneous detection of active ap-
pliances from smart meter data. These methods do not di-
rectly segregate appliance-level load but first identify states
of appliances and then disaggregated load is obtained by mul-
tiplying the average power consumption of device with the
number of instances, it was detected to be in an active state.
By far these are the most recent and best-known techniques
for multi-label classification based disaggregation.

3. PROPOSED APPROACH

Restricted Boltzmann Machines [8] are one type of undirected
graphical models that use hidden variables to model high-
order and non-linear regularities of the data. A typical RBM is
a two-layer bipartite graph with two types of units, the visible
units x and hidden units h. An RBM represents probability
distributions over the random variables under an energy-based
model. The energy model of an RBM is given by E(x, h) =
−xTWh− bTx− cTh, where W is the weight to be learned.
The joint probability distribution over (x, h) is expressed as
P (x, h) = 1

z exp(−E(x, h)), where Z is the normalization
factor. Learning RBMs is a difficult task due to the tractability
involved in computing normalization factor Z. Several learn-
ing algorithms have been proposed [11–13] to solve the prob-
lem above. Contrastive Divergence (CD) method proposed by
Hinton et al. [11] is an efficient method and is widely used to
learn RBMs. The generative property of RBM makes it use-
ful for learning latent space representation of data where we
don’t have information about how data is generated. RBMs
have been used for dimensionality reduction [14], collabora-
tive filtering [15], anomaly detection [16] and unsupervised
feature learning [17]. The classification RBM has been used
for various classification tasks in [7, 18] and label consistent
collaborative filtering [19].

3.1. Multi-Label Classification RBM

The joint probability distribution of the proposed multi-label
classification RBM model shown in figure 1 is given by,

p(y, x, h) ∝ e−E(y,x,h) (3)

where y is the label unit. We define the new energy func-
tion as follows:

E(y, x, h) = −hTWx− aTx− bTh− cT y − hTUy (4)

with parameters Θ = (W,a, b, c, U). The model is illus-
trated in figure 1. We find the values of visible and hidden
units using (5), (6) and (7) respectively.

p(hj = 1|x, y) = σ(bj + Ujl +
∑
k

Wjixi) (5)
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Fig. 1. Proposed architecture for NILM using multi-label
classification RBM.

p(xi|h) = σ(ai +
∑
j

Wjihj) (6)

p(yl = 1|h) =
exp(cl +

∑
j Ujlhj)∑y

l=1 exp(cl +
∑

j Ujlhj)
(7)

where σ is the logistic sigmoid and l is the class label
out of C classes. These formulations capture the predictive
information about the input vector as well as the target class.

Network parameter Θ is learned using CD [11] algorithm,

∆Wij = η
δlogp(x, y)

δWij

= η(< xiyih >data − < xiyih >model) (8)

where η is the learning rate.
For multi-label classification RBM, the above formulation

changes as now we have multi-label information present for
each sample. The conditional distribution of y given h be-
comes:

p(yl = 1|h) = σ(cl +
∑
i

Ujlhj) (9)

This formulation is not tractable since y now has 2C

possible values. Therefor for inference we use mean field
(MF) message-passing method for an approximate infer-
ence. The MF approach tries to approximate the joint
posterior p(y, h|x) by a factorial distribution q(y, h) =∏C

l=1 µ
yl

l (1− µl)
1−yl

∏n
j=1 τ

hj

j (1− τj)1−hj that minimizes
the Kullback-Leibler (KL) divergence with the true poste-
rior. Running the following message passing procedure to
convergence

µl ← σ(cl +
∑
j

Ujlτj) ∀l ∈ {1, ..., C}, (10)

τj ← σ(bj +
∑
b

Ujlµl +
∑
i

Wjixi) ∀j ∈ {1, ..., n}

(11)

we can reach a saddle point of the KL divergence, where
µl serves as the estimate for p(yl = 1|x) and τj can be used
to estimate p(hj = 1|x).

4. EXPERIMENTAL EVALUATION

We performed the experiments on two standard datasets viz.
The Reference Energy Disaggregation Dataset (REDD) [20]
and a subset of Dataport dataset [21] (also known as Pecan
Street Dataset) available in non-intrusive load monitoring
toolkit (NILMTK) format [22] .

The REDD dataset is a moderate size publicly available
dataset for electricity disaggregation. The dataset consists of
power consumption signals from six different houses, where
for each house, the whole electricity consumption, as well as
electricity consumptions of about twenty different devices are
recorded at every second.

The Dataport dataset contains 1-minute circuit level and
building level electricity data from 240 houses. It contains
per minute readings from 18 different devices: air condi-
tioner, kitchen appliances, electric vehicle, and electric hot
tub heater, electric water heating appliance, dishwasher, spin
dryer, freezer, furnace, microwave, oven, electric pool heater,
refrigerator, sockets, electric stove, waste disposal unit, secu-
rity alarm and washer dryer.

We compare our results with multi-label classification al-
gorithm proposed so far for NILM viz. ML-kNN, RakEl, and
LC-DDL. Both the datasets were split into training, testing
and cross-validation set in a ratio of 50:30:20 respectively.
Cross-validation set was used to decide the values of hyper-
parameters. We have munged the data such that each sample
contains per hour aggregated consumption and corresponding
device labels.

We use PyTorch [23] for the network implementation. In
the proposed multi-label classification RBM we use 60 sec-
onds of aggregated load sampled at 1Hz as input to the model.
For hidden unit following sizes are tried 32, 64, 128, and 256,
we find 128 to be best. The learning rate is set to 0.001 for all
our experiments. We use k = 2 steps of sampling in CD [11]
algorithm to train our model. For inference, we apply sigmoid
activation to the output of our model and threshold at 0.5.

Macro F1 and Micro F1 scores are the two metrics which
are commonly used to evaluate the performance of Multi-
label classifiers. Appliance-level energy error is computed for
each device to evaluate disaggregation performance. Macro
F1 score is average of individual F1 score of all the classes
so it could be biased towards a class with fewer samples. The
Micro F1 score indicates the overall performance of the clas-
sifier. It is computed by stacking up samples from all the
classes. The F1 score of an individual class is given by (12),

F1 =
2× TP

2× TP + FN + FP
(12)

Where TP is the number of true positives, FN is the number
of false negatives and FP is the number of false positives.

The appliance-level error also known as Normalized en-
ergy error (NEE) is a standard metric which is used in almost
every prior study in this area and it is given as (13),



Table 1. Appliance-Level Evaluation on REDD

Device MLkNN RAkEL LC-DDL MLC-RBM
F1-Score Error F1-Score Error F1-Score Error F1-Score Error

Lighting 0.6476 0.3718 0.6760 0.8213 0.6216 0.2608 0.6947 0.1762
Kitchen 0.5081 0.4304 0.6108 0.6995 0.6411 0.3326 0.7213 0.1273
Refrigerator 0.5292 0.3628 0.6724 0.5132 0.6118 0.2528 0.7186 0.1644
Washer Dryer 0.3903 0.3122 0.5267 0.6990 0.4977 0.3149 0.6983 0.1963

Table 2. Appliance-Level Evaluation on Pecan Street

Device MLkNN RAkEL LC-DDL MLC-RBM
F1-Score Error F1-Score Error F1-Score Error F1-Score Error

Air Conditioner 0.6391 0.1720 0.6521 0.8565 0.5882 0.1051 0.7023 0.2334
Dishwasher 0.6546 0.1690 0.6728 0.8490 0.4871 0.1501 0.7269 0.1341
Furnace 0.6123 0.1341 0.6231 0.8415 0.5572 0.0794 0.7113 0.2224
Microwave 0.5916 0.0727 0.6819 0.7301 0.5533 0.0795 0.6981 0.1985

Table 3. Performance Evaluation on REDD
Method Macro F1-Score Micro F1-Score

MLkNN 0.6086 0.6143
RAkEL 0.6290 0.6294

LC-DDL 0.5222 0.5262
MLC-RBM 0.7082 0.7157

NEE =

∑
t
|Pn

t − P̂n
t |∑

t
Pn
t

(13)

where Pn
t is the power consumption of the appliance n at any

time instant t.
Table 1 and Table 2 present the F1-Score and correspond-

ingly obtained disaggregation error for each target device in
both the datasets. Table 3 and Table 4 contain micro and
macro F1-Scores yielded by the state-of-the-art and proposed
algorithm on the REDD and Pecan Street dataset respectively.
Our proposed model yields the best results regarding classi-
fication measures and gives comparable disaggregation accu-
racy. Although best classification accuracy should reflect the
least disaggregation error, here it is not so. This mismatch
engenders an ambiguity in results.

We would like to clarify it with an example. Suppose true
labels for two hours of aggregate consumption of four devices
are 1 0 0 1 and 0 1 1 0 whereas the predicted labels are 0 1 1
0 and 1 0 0 1 respectively. For the given case F1-Score would
be zero as all the identified states are wrong. For the same
case, disaggregation accuracy would be 100 % as the number
of identified active appliances exactly matches the number
of true active appliances. This example explains why tech-
niques, such as LC-DDL, gives the best disaggregation ac-

Table 4. Performance Evaluation on Pecan Street
Method Macro F1-Score Micro F1-Score

MLkNN 0.6183 0.6194
RAkEL 0.5872 0.6019

LC-DDL 0.5214 0.5332
MLC-RBM 0.7080 0.7123

curacy but worst F1-Scores. Therefore in such a framework,
the performance of an algorithm should be judged only after
looking at both metrics collectively.

5. CONCLUSION

This work proposes a new technique for NILM framed as a
multi-label classification problem. The proposed multi-label
classification RBM has good reconstruction ability and when
combined with multi-label supervision also provides good
classification accuracy. This technique does not require any
appliance-level data which makes the task completely non-
intrusive. We compare the proposed technique with all the
prior works where NILM was transformed as a multi-label
classification task. We have performed an experimental eval-
uation of the proposed work on two widely used datasets.
Our proposed model yields the best results in term of clas-
sification accuracy and comparable results regarding energy
disaggregation. Although we have used multi-label RBM for
NILM, it is a generic approach and can be used for solving
any multi-label classification problem. In the future, we plan
to benchmark it against existing algorithms on established
multi-label classification datasets.
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